skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schrum, Mariah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Learning from demonstration (LfD) seeks to democratize robotics by enabling non-experts to intuitively program robots to perform novel skills through human task demonstration. Yet, LfD is challenging under a task and motion planning (TAMP) setting, as solving long-horizon manipulation tasks requires the use of hierarchical abstractions. Prior work has studied mechanisms for eliciting demonstrations that include hierarchical specifications for robotics applications but has not examined whether non-roboticist end-users are capable of providing such hierarchical demonstrations without explicit training from a roboticist for each task. We characterize whether, how, and which users can do so. Finding that the result is negative, we develop a series of training domains that successfully enable users to provide demonstrations that exhibit hierarchical abstractions. Our first experiment shows that fewer than half (35.71%) of our subjects provide demonstrations with hierarchical abstractions when not primed. Our second experiment demonstrates that users fail to teach the robot with adequately detailed TAMP abstractions, when not shown a video demonstration of an expert’s teaching strategy. Our experiments reveal the need for fundamentally different approaches in LfD to enable end-users to teach robots generalizable long-horizon tasks without being coached by experts at every step. Toward this goal, we developed and evaluated a set of TAMP domains for LfD in a third study. Positively, we find that experience obtained in different, training domains enables users to provide demonstrations with useful, plannable abstractions on new, test domains just as well as providing a video prescribing an expert’s teaching strategy in the new domain. 
    more » « less
  2. Collaborative robots that work alongside humans will experience service breakdowns and make mistakes. These robotic failures can cause a degradation of trust between the robot and the community being served. A loss of trust may impact whether a user continues to rely on the robot for assistance. In order to improve the teaming capabilities between humans and robots, forms of communication that aid in developing and maintaining trust need to be investigated. In our study, we identify four forms of communication which dictate the timing of information given and type of initiation used by a robot. We investigate the effect that these forms of communication have on trust with and without robot mistakes during a cooperative task. Participants played a memory task game with the help of a humanoid robot that was designed to make mistakes after a certain amount of time passed. The results showed that participants' trust in the robot was better preserved when that robot offered advice only upon request as opposed to when the robot took initiative to give advice. 
    more » « less